Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 646: 129-140, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187046

RESUMO

Metal organic frameworks (MOFs) with high porosity and highly tunable physical/chemical properties can serve as heterogeneous catalysts for CO2 photoreduction, but the application is hindered by the large band gap (Eg) and insufficient ligand-to-metal charge transfer (LMCT). In this study, a simple one-pot solvothermal strategy is proposed to prepare an amino-functionalized MOF (aU(Zr/In)) featuring an amino-functionalizing ligand linker and In-doped Zr-oxo clusters, which enables efficient CO2 reduction driven with visible light. The amino functionalization leads to a significant reduction of Eg as well as a charge redistribution of the framework, allowing the absorption of visible light and the efficient separation of photogenerated carriers. Furthermore, the incorporation of In not only promotes the LMCT process by creating oxygen vacancies in Zr-oxo clusters, but also greatly lowers the energy barrier of the intermediates for CO2-to-CO conversion. With the synergistic effects of the amino groups and the In dopants, the optimized aU(Zr/In) exhibits a CO production rate of 37.58 ± 1.06 µmol g-1 h-1, outperforming the isostructural University of Oslo-66- and Material of Institute Lavoisier-125-based photocatalysts. Our work demonstrates the potential of modifying MOFs with ligands and heteroatom dopants in metal-oxo clusters for solar energy conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...